Potassium Tetrakis(isothiocyanato)cobaltate(II) Trihydrate; a Redetermination

By Micharl G. B. Drew and A. Hamid bin Othman
Department of Chemistry, The University, Whiteknights, Reading RG6 2AD, England

(Received 6 August 1974; accepted 2 November 1974)

Abstract

K}_{2} \mathrm{Co}(\mathrm{NCS})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}, M=423 \cdot 51\), orthorhombic, $a=11 \cdot 116$ (5), $b=12 \cdot 981$ (7), $c=5 \cdot 354$ (5) $\AA, U=$ $771 \cdot 2 \AA^{3}, Z=2, d_{c}=1 \cdot 82, d_{m}=1 \cdot 80$ (2) $\mathrm{g} \mathrm{cm}^{-3}$, Mo $K \alpha$ radiation $\lambda=0.7107 \AA, \mu=21.7 \mathrm{~cm}^{-1}$. Space group $P 2_{1} 2_{1} 2$ from systematic absences $h 00, h=2 n+1,0 k 0$, $k=2 n+1$. The discrete anion $\left[\mathrm{Co}(\mathrm{NCS})_{4}\right]^{2-}$ has $\mathrm{Co}-$ $\mathrm{N}-\mathrm{C}$ angles of $164 \cdot 6$ (7) and $166.8(7)^{\circ}$ and not 111° as reported earlier by Zhdanov \& Zvonkova [Zh. Fiz. Chim. (1950). 24, 1339-1344]. The cobalt atom has a distorted tetrahedral environment and the bond lengths are Co-N $1 \cdot 967$ (7), $1 \cdot 949$ (7); N-C $1 \cdot 15$ (1), $1 \cdot 14$ (1); C-S 1.627 (9), $1 \cdot 657$ (8) Å. 886 independent reflexions, measured by counter methods, have been refined to $R=0.054$.

Introduction. Deep-blue needles of $\mathrm{K}_{2} \mathrm{Co}(\mathrm{NCS})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ were obtained by reacting excess potassium thiocyanate with cobalt nitrate. A crystal with dimensions $1.00 \times 0.25 \times 1.7 \mathrm{~mm}$ was mounted with the c axis parallel to the instrument axis of a General Electric XRD 5 apparatus which was used to measure diffraction intensities and cell dimensions. It was equipped with a manual goniostat, scintillation counter and pulse-height discriminator. Zirconium-filtered molybdenum X-radiation was used. 1076 independent reflexions with $2 \theta<55^{\circ}$ were measured by the stationarycrystal stationary-counter method. Several standard reflexions were measured repeatedly during the course of the experiment but no significant change in intensity was detected. The standard deviation $\sigma(\mathrm{I})$ of the reflexions was taken to be $\left[I+2 E+\left(0 \cdot 03 I^{2}\right)\right]^{1 / 2}$, where E is the estimated background of the reflexion. 886 reflexions with $I>\sigma(I)$ were used in subsequent calculations. No extinction or absorption corrections were applied. The positions of the cobalt atoms were determined from a Patterson function and Fourier syntheses were calculated to determine the positions of the remaining atoms. The anion has crystallographic C_{2} symmetry with the cobalt atoms in special positions, $2(a)$, on the twofold axis. The structure was refined by full-matrix least-squares calculations, all atoms anisotropically to $R 0 \cdot 054$. (Refinement with the opposite enantiomorph gave $R 0.059$.) The weighting scheme was chosen to give average values of $w \Delta^{2}$ for groups of reflexions independent of the values of F_{o} and $\sin \theta / \lambda$, and was $V w=1$ for $F_{o}<15$ and $V w=$ $15 / F_{o}$ for $F_{o}>15$. Calculations were made on a C.D.C. 7600 computer at the University of London Computer Centre using the X-RAY set of programs (Stewart,
1972). Atomic scattering factors for all atoms were taken from International Tables for X-ray Crystallography (1962) as were the corrections for the real and imaginary parts of the anomalous dispersion for the cobalt, potassium and sulphur atoms. The anisotropic temperature factor is defined as
$\exp \left[-0 \cdot 25 \pi^{2} \sum_{i} \sum_{j} h_{i} h_{j} U_{i j} b_{i} b_{j}(i, j=1,2,3)\right]$, where b_{i} is the i th reciprocal cell dimension. The 190 zero reflexions showed no large discrepancies. A difference Fourier synthesis showed no extraneous peaks, and the hydrogen atoms of the water molecules were not discernible. In the final cycle of refinement all shifts were $<0.05 \sigma$. The final list of positions is given in Table 1, thermal parameters in Table 2 and bond lengths and angles in Table 3.*

[^0]Table 1. Atomic coordinates ($\times 10^{4}$) with estimated standard deviations in parentheses

	\boldsymbol{x}	y	z
Co	5000^{*}	5000^{*}	$7718(2)$
K	$3164(2)$	$1230(2)$	$2394(5)$
$\mathrm{O}(1)$	0000^{*}	5000^{*}	$-322(26)$
$\mathrm{O}(2)$	$3685(7)$	$1980(5)$	$7212(15)$
$\mathrm{N}(1)$	$5530(6)$	$3904(5)$	$5432(12)$
$\mathrm{C}(1)$	$5651(6)$	$3362(5)$	$3749(14)$
$\mathrm{S}(1)$	$5859(2)$	$2596(2)$	$1383(4)$
$\mathrm{N}(2)$	$6353(6)$	$5385(5)$	$9838(12)$
$\mathrm{C}(2)$	$6976(6)$	$5651(5)$	$11404(14)$
$\mathrm{S}(2)$	$7873(2)$	$6056(2)$	$13673(4)$
	* Parameter fixed.		

Table 2. Anisotropic thermal parameters ($\times 10^{3}$) with estimated standard deviations in parentheses

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Co	$38(1)$	$36(1)$	$31(1)$	$02(1)$	00^{*}	00^{*}
K	$52(1)$	$74(1)$	$79(2)$	$-11(1)$	$4(1)$	$-13(1)$
$\mathrm{O}(1)$	$85(7)$	$59(5)$	$108(9)$	$-04(5)$	00^{*}	00^{*}
$\mathrm{O}(2)$	$77(4)$	$70(4)$	$83(5)$	$-14(4)$	$-19(5)$	$-08(5)$
$\mathrm{N}(1)$	$57(3)$	$47(3)$	$43(3)$	$05(3)$	$02(3)$	$-05(3)$
$\mathrm{C}(1)$	$32(3)$	$38(3)$	$38(4)$	$01(3)$	$-05(3)$	$04(3)$
$\mathrm{S}(1)$	$62(1)$	$47(1)$	$44(1)$	$05(1)$	$-05(1)$	$-13(1)$
$\mathrm{N}(2)$	$56(3)$	$47(3)$	$38(3)$	$00(3)$	$-05(3)$	$-04(3)$
$\mathrm{C}(2)$	$41(3)$	$35(3)$	$37(3)$	$02(3)$	$05(3)$	$03(3)$
$\mathrm{S}(2)$	$55(1)$	$58(1)$	$45(1)$	$-13(1)$	$-09(1)$	$-07(1)$
		$* ~ P a r a m e t e r ~ f i x e d$.				

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{N}(1)$	$1.967(7)$	$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(1)$	$164 \cdot 6(7)$
$\mathrm{Co}-\mathrm{N}(2)$	$1.949(7)$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(2)$	$166 \cdot 8(7)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 151(11)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{S}(1)$	$178 \cdot 5(7)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1 \cdot 141(11)$	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{S}(2)$	$179 \cdot 1(7)$
$\mathrm{C}(1)-\mathrm{S}(1)$	$1 \cdot 627(9)$	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	$108 \cdot 5(3)$
$\mathrm{C}(2)-\mathrm{S}(2)$	$1.657(8)$	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}()^{\prime}$	$103 \cdot 0(3)$
		$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)^{\prime}$	$114 \cdot 1(3)$
		$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(2)^{\prime}$	$108 \cdot 8(3)$

* Primed atoms are related to unprimed atoms by the twofold axis.

Discussion. In structures containing the thiocyanate ion bonded to a metal atom through nitrogen only, a wide variation of $\mathrm{M}-\mathrm{N}-\mathrm{C}$ angles has been found (Hazell, 1963; Knox \& Eriks, 1968; Beck \& Fehlhammer, 1972). In the majority of such examples the angles are in the range $150-180^{\circ}$. The most notable exception was the value of 111° found for the $\mathrm{Co}-\mathrm{N}-\mathrm{C}$ angles in $\mathrm{K}_{2} \mathrm{Co}(\mathrm{NCS})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ by Zhdanov \& Zvonkova (1950). As we could see no reason for this compound to be the odd one out, we redetermined its crystal structure. The structure of the anion $\left[\mathrm{Co}(\mathrm{NCS})_{4}\right]^{2-}$ is shown in Fig. 1. Our structure determination establishes that the previous work is incorrect.*

Significant deviations from tetrahedral symmetry are observed in the anion as shown by the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angles in Table 3. The $\mathrm{Co}-\mathrm{N}$ distances are, as expected, slightly shorter than those observed in the five-coordinate bis(isothiocyanato)-[N, N-bis-(2-diethylamino-ethyl)-2-methylthioethylamine- N, N, N]cobalt(II), which are 1.986 (12) and 1.971 (11) \AA (Dapporto \& Di Vaira, 1971) and much shorter than the 2.086 (7) \AA found in the octahedral bis(isothiocyanato)tetrakis-(4-vinylpyridine)cobalt(II) by Andreetti \& Sgarabotto (1972).

The $\mathrm{Co}-\mathrm{N}-\mathrm{C}$ angles are 164.6 (7) and 166.8 (7) and not 111° as previously found. The smallest $\mathrm{M}-\mathrm{N}-\mathrm{C}$ angles to be found in complexes of this type are now 129° in bis(isothiocyanato)bis-(N, N^{\prime}-dimethylethylenediamine)copper(II) (Korvenranta \& Pajunen, 1970) and 140° in bis(isothiocyanato)bis(ethylenediamine)nickel(II) (Brown \& Lingafelter, 1963).

It is often found (Knox \& Eriks, 1968; Naik \& Scheidt, 1973) that in a specific structure the large variations from linearity in $\mathrm{M}-\mathrm{N}-\mathrm{C}$ angles can be related to steric effects. These correlations are not always obvious but such effects are probably more important for thiocyanate groups than for nitrosyl groups

[^1]

Fig. 1. The $\left[\mathrm{Co}(\mathrm{NCS})_{4}\right]^{2-}$ anion in the c projection.
where the type of bonding with an $\mathrm{M}-\mathrm{N}-\mathrm{O}$ angle of 120° is well established (Frenz \& Ibers, 1972). It has been shown that for a number of compounds (Hazell, 1963; Knox \& Eriks, 1968) C-S distances decrease and to a lesser extent $\mathrm{N}-\mathrm{C}$ distances increase with variations in M-N-C angles from 180°. Our values are consistent with these results.

The closest contact involving K^{+}and the anion is $3 \cdot 14 \AA$ for $\mathrm{K} \cdots \mathrm{N}$.

We thank Dr D. A. Rice for his interest in this work and the National University of Malaysia for a grant (A.H.O.).

References

Andreetti, G. D. \& Sgarabotto, P. (1972). Cryst. Struct. Commun. 1, 55-57.
Beck, W. \& Fehlhammer, W. P. (1972). M.T.P. International Review of Science, Inorg. Chem., Vol. 2, Chap. 9.

Brown, B. W. \& Lingafelter, E. C. (1963). Acta Cryst. 16, 753-758.
Dapporto, P. \& Di Vaira, M. (1971). J. Chem. Soc. (A), pp. 1891-1895.
Frenz, B. A. \& Ibers, J. A. (1972). M.T.P. International Review of Science, Phys. Chem., Vol. 11, Chap. 2.
Hazell, A. C. (1963). J. Chem. Soc. pp. 5745-5751.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Knox, J. R. \& Eriks, K. (1968). Inorg. Chem. 7, 84-90.
Korvenranta, J. \& Pajunen, A. (1970). Suom. Kemistil. B43, 119-123.
Naik, D. V. \& Scheidt, W. R. (1973). Inorg. Chem. 12, 273-276.
Stewart, J. M. (1972). X-RAY system of programs, Univ. of Maryland Technical Report, TR 192.
Zhdanov, T. C. \& Zvonkova, Z. B. (1950). Zh. Fiz. Chim. 24, 1339-1344.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30766 (5 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

[^1]: * Cell dimensions are $11.11,12.98,5.41 \AA$. Space group $\boldsymbol{P}_{1} 2_{1}$ 2. The compound was stated to have the formula $\mathrm{K}_{2} \mathrm{Co}(\mathrm{NCS})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, though no attempt was made to locate the water molecules. The structure was determined from $0 k l$ and $h k 0$ data but not refined. No R value was given. The wrong structure was obtained because, although the correct absolute values for the coordinates were found, the authors chose the wrong combinations of sign.

